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Abstract 
 

This thesis presents a novel method of capturing 3D foot geometry from images for 

custom shoe insole manufacture. Orthopedic footwear plays an important role as a treatment and 

prevention of foot conditions associated with diabetes. Through the use of customized shoe 

insoles, a podiatrist can provide a means to better distribute the pressure around the foot, and can 

also correct the biomechanics of the foot.  

Different foot scanners are used to obtain the geometric plantar surface of foot, but are 

expensive and more generic in nature. The focus of this thesis is to build 3D foot structure from a 

pair of calibrated images. The process begins with considering a pair of good images of the foot, 

obtained from the scanner utility frame. The next step involves identifying corners or features in 

the images. Correlation between the selected features forms the fundamental part of epipolar 

analysis. Rigorous techniques are implemented for robust feature matching. A 3D point cloud is 

then obtained by applying the 8-point algorithm and linear 3D triangulation method.  

The advantage of this system is quick capture of foot geometry and minimal intervention 

from the user. A reconstructed 3D point cloud of foot is presented to verify this method as 

inexpensive and more suited to the needs of the podiatrist. 
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Chapter 1 

Introduction 
 

Orthopedic footwear plays an important role as a therapeutic and preventive measure 

against foot conditions associated with diabetes. Through the use of customized shoe insoles, a 

podiatrist can provide a means to better distribute the pressure around the foot, and can also 

correct the biomechanics of the foot. If caught early enough, orthopedic insoles can correct or 

prevent further complications from occurring. In order to construct customized shoe insoles, a 

3D model of the patient’s foot is required. 

The current process for constructing orthopedic shoe insoles involves applying a plaster 

sock to capture the shape or negative cast of the foot. Next, from that sock, a plaster mold is 

made to provide a positive image of the foot. Finally the podiatrist fabricates the insole over the 

mold using specialty materials. The time to produce just a plaster sock of the feet is 

approximately one and half hour. The ideas described here support automating this process with 

a digital means of capturing the shape of the foot, thereby reducing the modeling time 

considerably. 

Existing commercial scanners that generate 3D models are limited by high cost and/or 

too long a scan time for the intended application. This project seeks a cheaper and more specific 

alternative to generate a 3D model of the foot. Recently, a flexible 3D foot scanner utility frame 

[BAJOIE2003] was built. It is a flexible set up, positioning inexpensive cameras, providing 

ambient lighting conditions and hardware required to obtain pairs of distinct 2D images of the 

plantar surfaces of a patient’s foot, for use in capturing 3D foot geometry. 

The focus of this thesis is to build 3D foot structure from a pair of calibrated images. It 

consists of three basic steps. The process begins with considering a pair of good images obtained 
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from the scanner utility frame. The next step involves identifying corners or features in the image 

pair. Correlation between the features selected from these images forms the fundamental part of 

epipolar analysis. Rigorous techniques are implemented for robust feature matching. By 

recovering the epipolar geometry and estimating the homography matrix, all points on the foot in 

the first image are matched to the corresponding points in the second image. A 3D point cloud is 

then obtained by applying the 8-point algorithm and 3D triangulation [MA2001] algorithm. 

Results of the 3D point geometry of different foot samples are presented. All results are scaled to 

match dimensions of the model, by determining the scale factor in each case, using a structured 

model whose dimensions are known.  

 Chapter 2 begins with the introduction to diabetic neuropathy, aspects of the manual 

casting process, introduces the need for automation and reviews different automated techniques 

to achieve the objective.  It also summarizes the mathematics of 3D vision. The foot scanner 

utility frame to capture the images of the foot and the software interface used in generating the 

3D point geometry of foot is described in the third chapter. Those familiar with these topics may 

skip to chapter 4 which deals with camera calibration and determining the intrinsic calibration 

matrix. Chapter 5 describes the process of feature detection of points in the image using the 

combined Harris-Stephens and color intensity algorithm. Different aspects of point matching and 

choosing simplified Zhang’s algorithm to carry out feature correspondence is described in the 

sixth chapter. The seventh chapter deals with Euclidean 3D reconstruction process with results of 

3D point cloud as well as surface interpolated foot models are presented. The last chapter 

concludes the thesis with suggestions and a brief description of future work. 
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Chapter 2 

Background and Literature Review 

2.1 Introduction 

 Diabetic neuropathy traditionally is considered progressive and irreversible, and will 

result in lower extremity ulceration and amputation in a segment of the diabetic population 

despite the best efforts to control serum glucose levels. Among preventive measures are using 

custom footwear which reduce discomfort, increase blood circulation and help achieve good 

contact support [VALMASSY1996].  

 Conventional methods of manufacturing custom insoles involve lesser accuracy of 

plantar surface, more time to manufacture and are labor intensive. Newer methods of using laser 

scanners and footpads reduce time and effort but cost more and are less accommodating of 

podiatrist’s needs.  

 This chapter begins exploring the effects of diabetic neuropathy and the need for custom 

inserts in shoes to prevent leg amputation. It then describes the manual casting process needed to 

capture the plantar surface of foot and its drawbacks. A brief description of different existing 

automated methods to capture foot geometry is presented next. Lastly, an introduction to 

mathematics of 3D vision is developed. 

2.2 Diabetic Neuropathy 

 Diabetes can cause damage to the nerve and vascular supply in the feet and legs. Patients 

with neuropathy have reduced or no sensation and, therefore, might be unaware of any trauma to 

their feet caused by ill-fitting footwear or foreign objects in their shoes. Persons with diabetes 

often have circulation disorders (peripheral vascular disease) that can cause cramping in the calf 

or buttocks when walking. 
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 Some statistics related to foot problems of diabetic patients include the following 

[ADA2002]: 

 out of 4 Americans experience serious foot problems in their lifetime; 

 About 60-70% of people with diabetes have mild to severe forms of diabetic nerve 

damage  which in severe forms can lead to lower limb amputation; 

• Approximately 56,000 Americans a year lose their foot or leg to diabetes. 

 Costs associated with diabetic peripheral neuropathy and its resulting complication were 

shown by Gordois in his paper in 1993[GORDOIS2003] and include:. 

• 3182 patients underwent foot amputations in 2001 incurring a cost of $40,000 for Type I 

diabetes; 

• 39,242 patients underwent foot amputations in 2001 incurring a cost of approximately 

$38,000 for Type II diabetes; 

• Long term costs for treatment (1-3 years) are between $40,000 - $60,000 per patient. 

 The possible outcomes that result due to improper diabetic foot care begin with the 

insensitive foot which frequently collapses and widens. Repeated swelling and redness, mild to 

moderate aching, and an inability to adequately fit into regular shoes, often first herald this 

destructive condition. Neuropathy allows lesions to develop and go unrecognized because the 

normal warning sense of pain has been lost. Continued pressure or walking on the injured skin 

creates even further damage and the ulcer worsens. The open sore will frequently become 

infected and may even penetrate to bone, which may ultimately require foot amputation 

[VALMASSY1996]. 
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 General precaution techniques include avoiding bare foot exposure and using the right 

custom made insoles or shoe inserts. Corrective foot surgery is an option when the patient is 

generally in good health and has good circulation. 

2.3 Custom Orthoses 

 Normal footwear does not accommodate the biomechanics of the foot 

[VALMASSY1996]. Every patient has a different foot shape and the peak stress distribution is 

different for different feet. They impair blood circulation around the plantar surface of foot, 

leading to numbness or loss of sensation.  

 Custom orthoses generally tend to decrease the amount of abnormal stress and strain on 

the lower extremity. Abnormalities secondary to joint malfunction and muscle tendinous 

malposition are successfully addressed via functional orthoses. A functional foot orthosis best 

achieves its goal by maintaining normal function at the level of the subtalar and metatarsal joints 

(see Fig. 2.1), thereby allowing improved functioning for the more distal and proximal 

articulations of the lower extremity.  

 

Fig. 2.1 Foot Anatomy (image from http://www.savingfeet.com)  
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 As noted by Sgarlatto [SGARLATTO1972], properly fabricated orthoses help not only to 

improve abnormal foot function but also produce the following effects as listed below: 

• Normal ankle joint dorsiflexion and plantar flexion; 

• Normal knee flexion at the moment of heel contact for more efficient shock absorption; 

• Proper hip flexion and extension; 

• Efficient internal and external lower extremity motion; 

• Proper subtalar and midtarsal joint pronation and supination. 

Once properly fabricated, functional and accommodative orthoses have the ability to effectively 

reduce and eliminate painful excrescences and dermatologic hypertrophied lesions beneath 

weight bearing pressure points.  

2.4 Casting for Foot Orthoses 

 The most essential part in this process is the ability to produce an accurate negative cast 

with the subtalar joint neutral and the midtarsal joint fully pronated about both axes of motion. 

Valmassy in his book [VALMASSY1996] notes that this is achieved by first positioning the 

patient on the examining chair or table with the knee slightly flexed (See Fig. 2.2a), which 

prevents undesirable movement as the foot is held in the casting position. Following the 

positioning process, plaster bandage splints (5 X 30 in.) are applied to the patient’s foot. The 

plaster splints are then layered circumferentially around the medial, lateral, and plantar aspect of 

the foot. The foot is held in the proper position as plaster dries. 

 Once the impression is set, it is safe to remove the plaster cast from the foot. All contours 

seen in the plaster impression cast are compared with the foot. Once an acceptable cast is 

obtained, the impressions are allowed to dry sufficiently, before shipping to an orthotic 

laboratory. 
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(a) Podiatrist positions the foot 

 

(b) Plaster is applied on the plantar surface 
       of the foot 

   

 

(c) Negative and positive cast of feet 

 

(d) Custom insole manufacture 

Fig. 2.2 Manual Casts for Foot Orthoses. (Courtesy: Dr. William Coleman, New Orleans) 

  

 Once the laboratory receives the plaster sock negative, the orthotic fabrication process 

begins with inscribing a reference line, bisecting the posterior surface of the cast. A coating is 

applied to the interior surface to prevent the negative cast from adhering to the positive cast 

during the curing process. Liquefied plaster is then poured to fill interior of the cast, which is 

positioned to ensure the heel bisector remains vertical as it solidifies.  

Fall 2003 Fall 2003 

Fall 2003 Fall 2003 
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 The orthosis is fabricated by first outlining the dimensions of the cast on the orthotic 

blank. Excess material around this perimeter can be removed to facilitate the pressing process. 

With acrylics or polyethylene foam-like materials, a convection oven can be used to evenly heat 

the blank to achieve the desired flexibility. Once sufficiently heated, the blank is aligned with the 

positive cast and formed under mechanical or vacuum pressure until cooled enough to hold its 

shape. Once formed, the orthosis is fashioned with a grinder until it meets the predetermined 

dimensions of the positive cast. The orthosis finish is obtained by polishing and buffing. 

2.5 Limitations of Manual Cast Process 

 The manual orthotic process is a time consuming and dirty process. It usually takes about 

45 minutes to apply the plaster sock on the foot and takes around 15 – 20 minutes to dry and 

remove it from the foot. It then takes approximately about an hour to produce a positive foot 

image from the negative cast. The final orthotic is made through another lengthy process.  

 Apart from the time element, the geometry of the cast does not exactly define the plantar 

surface of the foot due to inherent errors in the process [SGARLATTO1971]. Sgarlatto 

suggested this is due to the unexpected drying nature of the material used, faster in certain areas 

of the foot compared to others, resulting in inaccurate geometry of the foot.  

2.6 Need for Automation of Foot Orthoses 

 The advantages of automating the process are numerous. Image based scanning takes 

considerably less time compared to the manual process allowing physicians to focus their time 

on additional patients. Current foot scanners (laser based foot scanners or image based foot 

scanners) available in the market capture the 3D foot geometry much more quickly and 

accurately than the manual process. Any necessary changes in foot scan are easier and faster than 
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using the manual process. Multiple scans can be performed to obtain an accurate plantar surface 

of foot.   

2.7 Automated Orthotic Process 

 Most automated processes begin with the negative scan of the foot taken using a scanner. 

The raw scan is then processed using a standard software interface to determine whether the 

plantar surface of the foot matches in close proximity to the points scanned. Redundant points 

can be removed and critical points that were not scanned can be interpolated from existing data. 

The final foot model is then sent to a CNC machine to mill the custom insole from a propylene 

board. Some general-purpose foot scanners that are currently used are described over the next 

few paragraphs. 

• Polhemus FastSCAN 

 FastSCAN is a hand held scanner [POLHEMUS2001] for which the setup time is 

minimal. However experience with this shows that it takes time, skill and proper lighting to get 

good scans. FormThotics, an insole manufacturer first used FastSCAN for orthotic purposes. Its 

software has features such as polygon reduction, which reduces redundant data from the model. 

It scans at a high level of detail throughout the foot, except for certain concavities near the toe 

area. The cost of the scanner is around $30,000 per unit. 

• INFOOT-foot scanner 

 INFOOT foot scanner [KOUCHI2001] has 8 CCD cameras and 4 laser projectors. It is 

capable of scanning the foot in 8 seconds. Cross-sectional data can be measured at 1 mm 

intervals. 3D Coordinates of anatomical landmarks can also be recognized using special markers, 

which do not reflect the laser. After automatic recognition and detection of landmarks with 

INFOOT, seventeen distinct foot measurements can be extracted. The software interface uses a 
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Free Form Deformation (FFD) technique [BLOOMENTHAL1997] to deform the pre existing 

data to the target foot data. The scanner costs around $40,000. 

• Foot Scanner 

 Foot scanner [SHAPE GRABBER2002] creates a complete 3D image of foot. It takes 

about 17 seconds to scan an entire foot. The scan speed is 10590 points per second. The 

deployment time is around 10 minutes. This scanner is custom built for shoe insole manufacture. 

 Footcare Express 

 Footcare Express [FOOTCARE2001] gives podiatrists details about the dynamic 

distribution of pressure on foot. All functionalities like scanner, software interface and the 

milling machine are packaged as one unit for obtaining maximum efficiency. This orthotic foot 

scanner is more expensive than most scanners (around $45,000), but also produces an orthotic. 

2.8 Limitations of Current Laser Foot Scanners 

 There are several limitations associated with image based laser scanners. Some of the 

prominent ones are listed below: 

 Current commercially available scanners cost around $30,000 - $45,000; 

 Hand held scanners take too long a time to scan the foot, longer than a typical patient can 

hold their foot still; 

 Some scanners are bulky and need considerable startup time; 

 Effective insoles require proper positioning of foot and this problem is not addressed by 

any available scanners. 

 The method proposed in this thesis deals with capturing 3D foot geometry from 2D 

images using pairs of inexpensive cameras. All techniques related to 3D reconstruction are 

performed to obtain a reasonable set of 3D point data of foot. The advantages related to this 
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process include being cost effective and more suitable to the needs of the podiatrist. Further 

chapters in the thesis describe the process in detail. 

2.9 Mathematics of 3D Vision 

 This section introduces certain concepts required to understand different geometries 

related to the 3D reconstruction process. The entire 3D space can be described using 4 

hierarchical levels of geometry – Euclidean, Metric, Affine and Perspective. The most general 

group is projective geometry, which forms the superset of all other groups. Successive subgroups 

include affine, then metric and lastly euclidean geometry.  

 Each of these geometries has an associated set of transformations, which leave certain 

data properties invariant. It is invariants, when recovered that allow for upgrading the model data 

to more specific or detailed level geometry. Each of these geometries beginning from Section 

2.9.1 is explained in terms of their invariants and transformations.  

 Projective geometry allows for perspective projections, and as such models the imaging 

process very well. Having a model of this perspective projection, it is possible to upgrade the 

projective geometry later to Euclidean, via the affine and metric geometries. Algebraic and 

projective geometry forms the framework for most computer vision tasks, especially in the fields 

of 3D reconstruction from images and camera self-calibration. 

 A classical text covering all aspects of projective and algebraic geometry is by Semple 

and Kneebone [SEMPLE1979]. Faugeras applies principles of projective geometry to 3D vision 

and reconstruction [FAUGERAS1993]. Other good introductions to projective geometry are by 

Mohr and Triggs [MOHR1996] and by Birchfield [BIRCHFIELD1988].  
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2.9.1 Projective Geometry 

2.9.1.1 Homogenous Coordinates and Other Definitions 

 A point in projective space of n- dimensions, Pn, is represented by a (n +1) element 

column vector of coordinates T
nxxx ],......,[ 11 += . At least one of the xi coordinates must be 

nonzero. Two points represented by (n + 1)-vectors x and y are considered equal if a nonzero 

scalar λ exists such that yx λ= . Equality between points is indicated by x ≈ y. Since scale is not 

important in projective geometry, the vectors described above are called homogenous 

coordinates of a point. Homogenous points with xn+1=0 are called points at infinity and are 

related to the affine geometry described in section 2.3. 

 A collineation or linear transformation of Pn is defined as a mapping between projective 

spaces, which preserves collinearity of any set of points. This mapping is represented by a (m+1) 

× (n+1) matrix H, for a mapping from Pn→ Pm. 

  A projective basis for Pn is defined as any set of (n + 2) points of Pn, such that no (n + 1) 

of them are linearly dependent. The set ei= [0,…1,…0]T, for i=1…n+1, where 1 is in the ith 

position, and en+2=[1,…1,…1]T form the standard projective basis. A projective point of Pn 

represented by any of its coordinate vectors x can be described as a linear combination of any n 

+ 1 points of the standard basis in Eqn. 2.1. 

                                                           ∑
+

=
=

1

1

n

i
iiexx                                                                    (2.1)                         

 Any projective basis can be transformed by a collineation into a standard projective basis 

[FAUGERAS1993]: “let [x1,…..xn+2] be n+2 coordinate vectors of points in Pn, no n +1 of which 

are linearly dependent, i.e., a projective basis. If e1,….en+1,en+2 is the standard projective basis, 
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then there exists a nonsingular matrix A such that Aei=λixi, i=1,….,n+2 where λi are nonzero 

scalars; any two matrices with this property differ at most by a scalar factor.” 

2.9.1.2 Projective Plane 

 The projective space P2 is known as the projective plane. A point in P2 is defined as a 3-

vector x=[x1,x2,x3]T, with (u, v) = (x1/ x3, x2/x3) the Euclidean position on the plane. This 2D 

projective plane is placed in a 3D projective space. A line is also defined as a 3-vector  l=[l1,l2,l3] 

and having the form of Eqn. 2.2. 

                                                          03

1 =∑ ii xl                                                                        (2.2) 

 This equation is called the point equation, which means that a point x is represented by a 

set of lines through it, or this equation is also called the line equation, which means that a line l is 

represented by a set of all points, that satisfy the relation. These two statements show that there is 

an equivalence between points and lines in P2. This property is called the principle of duality. 

Any theorem or statement that is true for the projective plane can be reworded by substituting 

points for lines and lines for points, and the resulting statement will also be true. 

 The line vector l defining the line through two points x and y is 

                                                           yxl ×= .                                                                       (2.3) 

This is also sometimes calculated as follows: 

                                                            yxl X][=                                                                      (2.4) 

with 

                                           

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=×

0
0

0
][

12

13

23

xx
xx
xx

x                                                              (2.5) 
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being the antisymmetric matrix of coordinate vector x associated with the cross product. The 

intersection point of two lines is also defined by the cross product of the line vectors: x=l1×l2. 

 All the lines passing through a specific point form a pencil of lines. If two lines l1 and l2  

in a 2D projective plane are distinct elements of this pencil, then all the other lines can be 

obtained as follows: 

                                                       
2211 lll λλ +=                                                                       (2.6) 

where λ1 and λ2 are scalars, such that at least one is non-zero. 

2.9.1.3 Projective Space 

 The space P3 is known as the projective space. A point of P3 is defined by a 4 numbers  

x=[x1,x2,x3,x4], not all zero. They form a coordinate vector x defined up to a scale factor. In P3 

objects other than just points and lines are included, such as planes. A plane is also defined as a 

four set of numbers ( p1, p2, p3, p4).  The equation of this plane is then 

                                  ∑
=

=
4

1
0

i
ii xπ .                                                                 (2.7)  

A point x is located on a plane if the following equation is true.  

     0=xTπ           (2.8) 

The structure which is analogous to the pencil of lines of 2Ρ  is the pencil of planes, the set of all 

planes that intersect in a certain line. 

2.9.1.4 Summary 

 Now that a framework for projective geometry has been created, it is possible to define 

the 3D Affine space as embedded in a projective space P3. In a similar way, the image plane of 

the camera is embedded in a projective space P2. Then a collineation exists which maps the 3D 
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space to the image plane, 23 Ρ→Ρ , via a 3 x 4 matrix, as discussed in more detail in chapter 

seven on 3D Reconstruction. 

2.9.2 Affine Geometry 

 The Affine geometry lies between the projective and metric geometries and contains 

more structure than the projective stratum, but less than the metric and Euclidean ones. 

2.9.2.1 Affine Plane 

 The line in the 3D projective plane with all points 04 =x  is called the line at infinity or
∞l . 

It is represented by the vector Tl ]1,0,0,0[=∞
. The affine plane is embedded in the projective plane 

under a correspondence of TT XXXXXPA ]1,,[],[: 2121
22 →=→ . There “is a one-to-one 

correspondence between the affine plane and the projective plane minus the line at infinity with 

equation 03 =x ” [FAUGERAS1993]. For a projective point Txxxx ],,[ 321=  that is not on the line 

at infinity x3 ∫ 0, the affine parameters can be calculated as 
3

1
1 x

x
X =  and 

3

2
2 x

x
X = . 

2.9.2.1.1 Transformations 

 A point x is transformed in the affine plane as follows: 

     bBXA +=                     (2.9) 

with B being a 2 x 2 matrix of rank 2, and b a 2 x 1 vector. These transformations form a 

particular subgroup which leaves the line at infinity invariant. 

2.9.2.2 Affine Space 

 As in the previous section, the plane at infinity 
∞π has equation 04 =x  and the affine 

space can be considered to be embedded in the projective space under a correspondence of 

33 PA → : TT XXXXXXX ]1,,,[],,[ 321321 →= . Then for each projective point x=[x1,x2,x3,x4]T 
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that is not in the plane at infinity x4 ∫0, the affine parameters can be calculated as 
4

1
1 x

xX = , 

4

2
2 x

xX =  and 
4

3
3 x

xX = . 

2.9.2.2.1 Transformations 

 Affine transformations of space ( X*= [T]X) can be written exactly as in Equation (2.9), 

but with B being a 3x3 matrix of rank 3, and b a 3x1 vector.  

                                                          ⎥
⎦

⎤
⎢
⎣

⎡
≈

103
TA

bB
T                                                         (2.10) 

The invariants of affine geometry are the points, lines and planes at infinity. These form an 

important aspect of camera calibration and 3D reconstruction. Obtaining the plane at infinity in a  

specific projective representation allows for an upgrade to an affine representation. 

2.9.3 Metric Geometry 

 This geometry corresponds to the group of similarities. The transformations in this group 

are Euclidean transformations such as rotation and translation. The metric geometry allows for a 

complete reconstruction up to an unknown scale. 

2.9.3.1 Metric Plane 

 Affine transformations don’t change line at infinity by definition, but to also preserve two 

points on that line called the absolute points or circular points. The circular points are two 

complex conjugate points lying on the line at infinity [SEMPLE1979].  

2.9.3.2 Metric Space 

 In metric space, affine transformations are adapted to leave the absolute conic invariant. 

The absolute conic W is obtained as the intersection of the quadric equation ∑
=

=
4

1

2 0
i

ix  with p• 
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                      ∑
=

==
4

1
4

2 0
i

i xx .       (2.11) 

Affine transformations which keep W invariant are written as: 

                                                           ⎥
⎦

⎤
⎢
⎣

⎡
≈

103
TM

bcC
T                                                          (2.12) 

where c>0 is any positive non zero scalar, and C is orthogonal: CCT=I3x3. The absolute conic is 

the invariant variable of the metric geometry. 

 2.9.4 Euclidean Geometry 

 Euclidean Geometry is the same as metric geometry, the only difference being that the  

relative lengths are upgraded to absolute lengths. This means that the Euclidean transformation 

matrix is the same as in equation (2.12) without the scaling factor 

                                                             ⎥
⎦

⎤
⎢
⎣

⎡
≈

103
TE

bC
T .                                                        (2.13) 

2.10 Conclusions 

 This chapter introduced the problems associated with diabetic neuropathy and the need 

for custom shoe inserts to prevent leg amputation. A brief description of the manual casting 

process was given along with its drawbacks which motivate the need to automate this process. It 

was noted that the downside using existing foot scanners were the costs associated with it and 

lack of applicability.  A brief treatise on the mathematics of 3D vision was presented with 

description of different 3D geometries. Though sufficient details were given on projective and 

affine geometry, a euclidean reconstruction of the foot is considered in this thesis. More specific 

details related to euclidean reconstruction are dealt in chapter seven in the thesis. 
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Chapter 3 

3D Foot Scanner Utility Frame 
 

 
3.1 Introduction 
 
 This chapter introduces the basic framework of the entire work done applying the new 

method of 3D modeling of foot from images. Review of the foot scanner utility frame is 

described briefly and the description of the software interface (GUI) is laid out with its 

functionalities. 

3.2 Foot Scanner Utility Frame 
 

Louisiana State University, Mechanical Engineering Department, was asked to design an 

inexpensive prototype system that will acquire sufficient 3D point geometry of feet for the use in 

the delivery of orthopedic shoe insoles.  The project consists of two parts: 

1. Capture, Extract, and Process 3D Point Geometry of the Feet 

2. Design of the Utility Frame 

A mechanical engineering design team [BAJOIE2003], comprising three students was tasked 

with the design of the prototype scanner utility frame. The function of this prototype was to 

support the experimental determination of the best set and arrangement of inexpensive cameras 

to allow for each point on the foot to be captured by at least two cameras. 

The primary operating environment for this system is a 10 ft x 10 ft clinical examination room.  

The actual workspace within this room is a small 4 ft diameter area in front of an adjustable 

clinical chair. The following figure shows the layout of the examination room. 
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Fig. 3.1 Examination Room 
 

 

The prototype design consists of 6 major sub-assemblies depicted below. 

 

Fig. 3.2 Utility Frame 

The first sub-assembly of the utility frame is the Camera Positioning assembly.  The 

functionality of this system is to allow for each point on the foot to be captured by at least two 

cameras, and to also provide a clear camera line of sight to the foot.  The data points on the foot 
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that are needed are from the ball of the foot to the back of the heel, and up the lateral sides. Of 

these points, the heel is the most critical point on the foot.  Utilizing a U-shaped configuration of 

five camera arms, which consist of varying lengths of 3/8” diameter aluminum rods and mini-

ballhead camera mounts, five different unobstructed images of the foot can be acquired.    

The next sub-assembly in the utility frame is the Body/Camera Shield.  The first function 

of this assembly is to prevent the physician’s lab coat and tie from interfering with the camera 

view, while the second function is to protect the camera arms from being bumped or knocked out 

of position.  While isolating the cameras from the physician, the shield also provides adequate 

leg and body clearance to allow the physician to comfortably position his/her body. 

 The Light and Support Assembly is the third sub-assembly for the design.  The functions 

of this assembly are to provide clear lines of sight for both the physician and the cameras, allow 

easy access of the foot, provide the adequate lighting intensity and contrast for image capture, 

and protect the physician’s forehead. This assembly is composed of four parts: Support frame, 

light source, light shield/shroud, and forehead padding.  

The fourth sub-assembly is the Physician Arm Support Assembly.  The first function of 

this assembly is to provide a clear camera line of sight to the foot. The second function is to 

assist the physician in holding the patient’s foot. This assembly is composed of the following 

parts: Polypropylene platform, foam padding, aluminum support bar, and L-bracket. The 

polypropylene platform supports the physicians arm, and holds back the physician’s lab coat 

sleeve. Meanwhile, the foam padding provides extra comfort for the physician’s arm. The 

support bar and L-bracket are used for strengthening and mounting of the assembly. 

The Base Assembly is the fifth assembly to the design. The functions of the base 

assembly are to provide portability and stability for the frame, and support for the control box 
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assembly. The light weight base frame is made of aluminum and is maneuverable through the 

use of four medium duty casters. 

The final sub-assembly is the Control Box. The control box, which is located under the 

base, provides the housing for the electrical components of the utility frame, such as a surge 

protector, USB Hubs, and electrical adaptors. It also isolates the wiring of these components and 

the cameras from the metallic frame. The control box provides a single power source cable and 

two USB outlet cables which connect to the PC. 

3.3 Experimental Setup 
 
Preliminary setup consists of assembling the six sub components into one frame. All necessary 

connections are done and all wiring directed towards the control box to reduce clutter. Webcam 

software is started and video images are checked for clarity. Images from the webcams are then 

taken in a sequence manually to collect a series of 5 images. These are then stored in a common 

folder for the interface to generate the 3-D model of the foot. 

3.4 Advantages of Using the Foot Scanner Utility Frame 
 
The foot scanner is unique in the sense that it does not use any lasers in its scanning process. It 

allows each point to be captured by at least two cameras. Provides an inexpensive means of 

capturing the geometry of foot. Unlike usual laser foot scanners, the capture period is less. It also 

gives an adequate environment for image capture. It is also versatile and adjustable. It is custom 

built to meet the needs of the podiatrist, by providing easy access to foot. It is portable and 

mobile in nature. Easy setup and teardown is possible because of the use of sub assemblies. 

3.5 Graphical User Interface to Generate 3D Point Geometry 
 
The Graphical User Interface is built using MATLAB©. The functionality of the interface is to 

pick the set of images from the folder taken by the cameras and generate 3D point geometry of 
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foot using set of sequential techniques. It is completely interactive and needs minimal 

supervision. The steps involved using the interface to generate the model is: 

• Camera Calibration is done to estimate the intrinsic parameters of the camera. This 

involves using the calibration tool on a set of images which contain a test rig such as a 

planar chess board; 

• Corner detection is done on a pair of images using the algorithm to detect marked corners 

or points; 

• Feature matching is the next process to match corresponding points in their respective 

images; 

• Robust estimation of fundamental matrix is performed using 8 corresponding points; 

• 8 point algorithm is executed to determine the extrinsic parameters of the cameras; 

• 3D triangulation algorithm is executed to extract the 3D point data from images. 

All these steps are dealt in more detail in successive chapters. 

3.6 Objectives and Novel Aspects of Current Method 
 
One of the important objectives as required by the podiatrist was to extract 3D geometry of the 

foot inexpensively. It involves using economically priced web cameras to capture images. 

Simple Foot Scanner Utility Frame to house the cameras and necessary equipments. It is 

customized to suit the needs of the podiatrist. The entire functionality is built in the software 

interface which generates 3D points from those marked on foot. Apart from that, the frame is 

built for easy setup and teardown. It is sterile and adaptable for the hospital environment. 
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Fig. 3.3 Graphical User Interface (GUI)  

 3.7 Conclusions 

 This chapter reviews the custom built foot scanner utility frame to capture images of foot. 

The basic components of the foot scanner are dealt in detail. A brief description of the image 

capturing process is given. Mention of the software interface to generate 3D foot geometry is 

made with description of each of the functionalities involved.  
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Chapter 4 

Camera Calibration and Epipolar Geometry 

4.1 Introduction 

 Camera calibration is one of the most important steps in the 3D reconstruction process in 

order to extract the metric information from 2D images. By calibrating the camera and 

determining its intrinsic parameters, the 3D coordinates can be mapped in world space to 2D 

coordinates in the image. This information is necessary to reconstruct the 3D point from images 

(reverse mapping). This chapter introduces the basic pinhole camera model for capturing an 

image from the 3D model. It also describes the epipolar geometry that exists when there are two 

images of the same 3D model in space. A detailed description of the calibration algorithm is 

given to determine the intrinsic camera parameters - focal length f, center of projection c and 

radial distortion k.  

4.2 Camera Model 

 A camera is often described using the pinhole model [FAUGERAS1993]. A collineation 

exists in 3D projective geometry, which maps the projective space to the camera’s retinal plane 

(see Fig. 4.1). Then the coordinates of a 3D point M = [X,Y,Z]T in a Euclidean world coordinate 

system and the retinal image coordinates m = [u,v]T are related by the following equation 

                 MPms =                                                                   (4.1) 

where s is a scale factor, Tvum ]1,,[=  and TZVUM ]1,,,[=  are the homogenous 

coordinates of vector m and M, and P is a 3x4 matrix representing the collineation 23 Ρ→Ρ . P is 

called the perspective projection as illustrated in Fig. 4.1. It shows the case where the projection 

center is placed at the origin of the world coordinate frame and the retinal plane is at Z=f=1. 

Then u and v are defined as follows: 
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Z
fYv

Z
fXu == ,     "  ][ 333 0xIP = .                   (4.2) 

 The optical axis passes through the center of projection (camera) C and is orthogonal to 

the retinal plane. The principal point c, is the intersection of the optical axis with the line passing 

through point M and the retinal plane. The focal length f is the distance between the center of 

projection and the retinal plane. 

 

 

Fig. 4.1 Perspective Projection 

 

A world coordinate system is usually defined with the positive Y- direction pointing upwards, the 

positive X-direction pointing to the right, and the positive Z-direction pointing into the retinal 

plane. The retinal plane forms part of epipolar geometry (described in section 4.3) and the image 

plane is internal to the camera. The transformation which maps the retinal plane from the image 

plane is brought about by the camera calibration matrix (described in section 4.4) 

 

 f 
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4.3 Epipolar Geometry 

 Epipolar geometry exists between two camera systems. With reference to Fig 4.2, the two 

cameras are represented by coordinate systems C1 and C2. Points m1 and m2 are the image points 

of the 3D point M. Epipoles e1 and e2 are the intersections with both images planes of the line 

joining the two cameras C1 and C2. These epipolar points are the projection of the respective 

cameras in the opposite image planes. The plane formed with the three points <C1MC2> is called 

the epipolar plane. The lines lm1 and lm2 are called the epipolar lines and are formed when the 

epipoles and image points are joined. 

 

Fig. 4.2 Epipolar Geometry 

 The point m2 is constrained to lie on the epipolar line lm1 of point m1. This is called the 

epipolar constraint. To visualize it differently: the epipolar line lm1 is the intersection of the 

epipolar plane mentioned above with the second image plane I2. This means that image point m1 

can correspond to any 3D point (even points at infinity) on the line <C1M> and that the 

projection of <C1M> in the second image I2 is the line lm1. All epipolar lines of the points in the 

first image pass through the epipole e2 and form thus a pencil of planes containing the baseline 

<C1C2>. The above definitions are symmetric in a way such that the point of m1 must lie on the 

epipolar line lm2 of point m2. Expressing the epipolar constraint algebraically, the following 

equation needs to be satisfied in order for m1 and m2 to be matched: 
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     012 =mFm
T

            (4.3) 

where F is a 3x3 matrix called the fundamental matrix. The following equation also holds: 

         11 mFlm =           (4.4) 

since the point m2 corresponds to point m1 belongs to the line lm1 [LUONG1996]. The role of the 

images can be reversed and then 

     021 =mFm T
T

.         (4.5) 

which shows that the fundamental matrix is changed to its transpose. 

 

4.4 Camera Calibration Matrix 

 The camera calibration matrix, denoted by K, contains the intrinsic parameters of the 

camera used in the imaging process. 
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 The focal length f, gives the metric distance measured in pixels ( in the image coordinate 

system), used later to map the 3D point from two corresponding points in the images. The values 

pu and pv represent the width and height of the pixels in the image and α , the skew angle (Fig. 

4.3).  
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Fig. 4.3 Illustration of Pixel Skew 

It is possible to simplify K as: 
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                                                 (4.7) 

where, fu and fv are the focal lengths measured in width and height of the pixels, s represents the 

pixel skew and the ratio fu:fv characterizes the aspect ratio of the camera.  

 The camera calibration matrix to transform points from the retinal plane to points on the 

image plane given by 

      ℜ= mKm .                    (4.8) 

4.5 Calibration Using a Planar Check Board 

 There are several advantages using a 2D surface for calibration. It is easy to mark the 

dimensions on a 2D surface as compared to 3D surface. In addition, measurements are easy 

using a 2D surface. The complexity associated with 2D rigs is less compared to 3D surfaces. 

 Besides, the accuracy in the calibration results obtained using 3D rigs is higher compared 

to 3D rigs. In this thesis, a chess board is chosen as a 2D calibration rig. It is chosen because, it 
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has distinct black and white squares with equal size. The chess board also makes it easy to mark 

the corners interactively.  

 The calibration is done using an existing Camera Calibration Toolbox 

[CALTECH1999].The process begins with selecting a 2D chess board as a test rig. The 

dimensions of the chess board are measured. This includes the dimensions of each square (see 

Fig. 4.4) as well as the number of squares along the length and breadth of the chess board. The 

focal length of the camera is fixed during the entire calibration process. Twenty images of the 

chess board from different vantage points are then taken and stored in a folder.  

 The toolbox program requires at least twenty images of the chess board in different 

positions to get a robust result of the calibration matrix. On every image the four corners of the 

chess board are marked interactively. The program then assigns all corners associated with the 

chess board. This process is repeated for all selected images and a best estimate is evaluated for 

the intrinsic parameters of the camera. 

 

(a) Interactively marked four corners 

 

(b) Corners selected after first trial 

Fig. 4.4 Steps Involved During the Calibration Process (fig. continued) 
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(c) Corners selected during one of ‘n’ trials 

 

(d) Final extracted corners on Chess Board 

 

4.6 Calculating the Camera Calibration Matrix 

 A treatise on estimating the Camera Calibration Matrix is shown in the book An 

Invitation to 3-D Vision, From Images to Geometric Models [MA2001]. The final equation that 

maps the coordinates of the 3D object to pixel coordinates in the image is given by: 
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where: 

 x’  & y’  = x  & y image pixel coordinates, 

 sx & sy  = scale in x and y directions, 

 sq   = skew in x and y directions, 

 ox & oy = center of projection in x and y coordinates in pixels, 

 f           = focal length in pixels, 

 X,Y,Z    = coordinates of the 3-D object in world coordinates, 
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 λ = arbitrary independent scale factor. 

Equation 4.9 can be simplified as noted in Equation 4.10. 
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 The constant 3x4 matrix 0Π represents the perspective projection. The upper triangular 

3x3 matrix K collects all parameters that are “intrinsic” to a particular camera, and is therefore 

called the intrinsic parameter matrix, or the calibration matrix of the camera. The above 

parameters can be calculated using the Camera Calibration Toolbox [CALTECH1999]. 

4.7 Calibration Results 

 The camera used in this work is an Intel© CS 330 Pro Video PC Camera. The technical 

specifications are  

• CCD Sensor for enhanced image quality and low-light performance, 

• 640 x 480 VGA Resolution, 

• 50 degree field of view, 

• Focus distance of 10 cm to infinity. 

 Two test rigs are considered to verify and obtain an accurate calibration matrix values. 

The first case involves a rig rectangular in shape, similar to a chess board. In the second case, a 

chess board is considered having equal number of squares in it. 
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Case 1: 

 

Fig. 4.5 Final Extracted Corners on the Test Rig 

 

Dimensions of the chess board: 

Length of the rig in Y direction (mm) = 270, Breadth of the rig in X direction (mm) = 210 

Number of squares along X direction = 7, Number of squares along Y direction = 9 

Calibration Results: 

 The results obtained are the intrinsic parameters of the camera. They include focal length 

f along u and v directions in pixels. Principal point or center of projection cu and cv in pixels and 

skew of the pixel  a in degrees. They are listed in Table 4.1. 

  Table 4.1 Calibration Result Set for Case 1  

Focal length along u direction  fu (in pixels) 408.98 

Focal length along v direction  fv (in pixels) 407.61 

Principal point coordinates cu (in pixels) 154.5 

Principal point coordinates cv (in pixels) 122.5 

Skew a ( in degrees) 0 
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It is noted that the values of K matrix are in pixels. 

Case 2: 

 To check the accuracy of the results obtained, another calibration rig was chosen with 

different dimensions (see Fig. 5.6). Twenty images were taken and the calibration algorithm was 

applied to those images. The results obtained are as follows: 

Dimensions of the chess board: 

Length of chess board along Y direction (mm) = 144,  

Breadth of chess board along X direction (mm) = 144  

Number of squares along X direction = 8, Number of squares along Y direction = 8 

 

Fig. 4.6 Second Trial Using a Different Chess Board 

Calibration Results: 

 The results obtained are the intrinsic parameters of the camera. They include focal length 

f along u and v directions in pixels. Principal point or center of projection cu and cv in pixels and 

skew of the pixel  a in degrees. The results for case 2 are listed in Table 4.2. 

 



www.manaraa.com

 34

  Table 4.2 Calibration Result Set for Case 2 

Focal length along u direction  fu (in pixels) 412.61 

Focal length along v direction  fv (in pixels) 403.28 

Principal point coordinates cu (in pixels) 156.4 

Principal point coordinates cv (in pixels) 119.2 

Skew a ( in degrees) 0 

 

Therefore from Eqn. 4.7, K matrix becomes 
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where all values in K matrix are in pixels. 

 Comparing the values of K in equation 4.11 and 4.12, we see that all parameter values are 

within a range of ≤5 pixel accuracy. The small differences in values are attributed to the corners 

being picked in the algorithm interactively. 

4.8 Conclusions 

 The camera calibration process and determining the calibration matrix has been presented 

in this chapter. This process is among the important steps that are undertaken in the 3D 

reconstruction process. The application of the calibration matrix K will be shown in Chapter 7, 

where it is used in reconstruction of foot geometry. 
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Chapter 5 

Feature Detection 
 
5.1 Introduction 

 Feature point selection plays an important role in the entire 3D reconstruction process. 

This is a process where marked points on foot are detected by the algorithm. These points in the 

image are then reconstructed later as 3D points in space. This chapter outlines the existing 

methods to detect points on the image and their drawbacks. A composite technique is suggested 

to robustly detect points utilizing color intensity information in addition to gradient changes that 

occur near marked points in the image.  

5.2 Review of Earlier Works on Feature Detection 

 Several techniques have been proposed to detect points or features. There are algorithms, 

which detect features such as points, and also which detect edges. A few major works are 

reviewed in this section. 

 One of the earliest works was done by Kitchen & Rosenfield [KITCHEN1982], where 

they used intensity variation techniques to detect corners in an image. Their results are based on 

grey level intensity variations that occur in x & y directions in the image. Any change in the 

gradient in both the directions results in detecting a point or corner.  

 Earlier work done on detecting the corners used the method of segmentation, where the 

image was partitioned based on some common shapes and then attention focused on those 

segments for corner detection. The work done by the above authors eliminates this process of 

segmentation by using the method of gradients to detect the corners. The drawbacks using this 

method are not obtaining a clear set of results for a more defined image. The algorithm also 

detects unwanted corners. Besides that, all results use grey scale images. But nevertheless this 
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method marked the beginning of using grey scale gradients in corner detection and also 

eliminating the process of segmentation. 

 Ellen C. Hildreth [HILDRETH1985] introduced the concept of edge detection, based on 

earlier works on corner detection. Her research was based on recovering physical properties of 

objects in the scene, such as the location of object boundaries and the structure, color and texture 

of object surfaces in the image. The method outlined in this manuscript is similar to the 

procedure of evaluating grey scale intensities in the process of feature detection. This algorithm 

was used to determine the shape and properties of an object under consideration. One noted 

contribution of her research includes applying the smoothing function on intensity gradients. 

Drawbacks of using this method with respect to corner detection are the absence of a local 

intensity correction needed to resolve ambiguous corners. 

 One of the most prominent contributions in the field of corner detection was presented by 

C Harris & M Stephens [HARRIS1988]. They first review the earlier work done by Kitchen & 

Rosenfield. They introduced the concept of a corner having intensity gradient change in both x 

and y directions, which would be detected as a feature. In addition to that, they used the 

technique of local auto-correlation to increase the accuracy of detection. They also discussed 

methods of tracking features defined as discrete (isolated points in the image which could be 

detected using the earlier technique of Kitchen & Rosenfield), which have certain drawbacks. 

Methods to detect features, which form a continuum like texture, or edge pixels, are also 

discussed in great detail. Using the concept of edge detection, corners also could be detected 

using intersection property of two edges. Important drawbacks include detecting more corners 

than required from the image. Apart from that, the algorithm is less effective in a known 

environment, where corners are marked on the object with known distances. This algorithm does 
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most of the corner detection needed for current project. However an improvement combining the 

algorithm with information on color intensity is detailed in further sections of this chapter. 

5.3 Corner Detection Using Harris-Stephens Algorithm 

 Initial detection of corners is performed using the Harris-Stephens algorithm 

[HARRIS1988]. The entire image (RGB format) is converted into a 2 dimensional matrix of grey 

scale pixel intensities. A sub window or mask of dimensions 7 by 7 pixels is selected to examine 

the existence of corners. A minimum threshold t is defined for the window of pixels taken as: 

               0>τ                                     (5.1) 

for 7x7 window size. The value of the threshold can be changed accordingly, based on the kind 

of features to be detected. For most cases, t is around 0.04 – 0.1. The gradient matrix G for all 

pixels within the window is calculated as: 
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The threshold value for this gradient matrix is computed as: 

                                                     )()det()( 2 GtracekGGC ×+=                                                 (5.3) 

where, k is a small scalar, chosen between 0.04 – 0.06. Different choices of k, results in favoring 

gradient variation in one or more directions. Features with significant variation in both directions 

(x & y), will enable C(G) to be greater than minimum thresholdτ . These are then selected as 

features and stored in a matrix.  

 To detect points at the edges or boundaries of the image, the window size is chosen from 

0 to 7 instead of -3 to +3 perpendicular to the edge considered. For example, if the edge is along 

y direction, then the x values of the window at points on that edge would begin from 0 to 7. 
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5.4 Drawbacks of Harris-Stephens Algorithm 

 One of the important drawbacks of using this algorithm is detecting too many corners. It 

also works only on grey scale images, hence not taking advantage of color information of 

marked feature points. To make this algorithm work in a more controlled environment, color 

intensity of the features can be used in conjunction with the algorithm. The next section deals 

with the application of combined Harris-Stephens and color intensity algorithm to enhance 

corner extraction and reduce selecting extraneous points. 

5.5 Corner Detection Using Combined Harris-Stephens & Color Intensity Algorithm 

 The points marked on the foot have a certain color intensity value described in terms of 

its combination of RGB (Red, Blue and Green) values. This step is performed by taking a sample 

image of the foot with marked points of user specified color. Points from the image are picked 

interactively and the RGB value of the marked color is determined using a standard image 

processing function in Matlab [MATHWORKS2004]. Color values for marked points would 

vary under different lighting conditions but lie within a bandwidth. Bandwidth here is defined as 

a range of acceptable range of values in all three primary colors (RGB).  

 The process of detecting points (marked on the foot) on the image begins with the initial 

selection of corners using Harris-Stephens algorithm which are the input for a color intensity 

algorithm. The RGB values of input corners from the Harris-Stephens algorithm are recorded. 

Corners that lie within the specified bandwidth are kept as feature points and others are 

discarded. The final set of points so obtained is stored. 

5.6 Results  

5.6.1 Harris-Stephens Algorithm 

A representative set of results obtained using Harris-Stephens algorithm.  



www.manaraa.com

 39

 

 

 

 

 

 

 

 

Fig. 5.1 Marked Points Detected in an Ideal Image  

 

  Table 5.1 Results of Points Detected Using Harris-Stephens Algorithm 

Tracking Window Size wx (in pixels) 7 

Tracking Window Size wy (in pixels) 7 

Threshold Value t 0.06 

Actual marked points on foot 26 

Number of Points Detected 26 

 

 

 A plot of corners detected vs. threshold value (sensitivity to threshold value) is shown in 

Fig. 5.2. It is observed that for an ideal image with a uniform background, Harris-Stephens 

algorithm detects almost all required points marked on the foot. Considering a more general 

background, such as one shown in Fig. 5.3, the algorithm detects a significant number of 

unwanted features in the background as well as on the foot. 
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     Fig. 5.2 Marked Points Detected Vs Threshold Value for Image 1 

  

 

 

 

 

 

 

Fig. 5.3 Result of Points Detected on Actual Foot Image with a General Background 

  Table 5.2 Results of Points Detected on Actual Foot with General   
  Background Using Harris-Stephens Algorithm 

Tracking Window Size wx (in pixels) 7 

Tracking Window Size wy (in pixels) 7 

Threshold Value t 0.07 

Actual marked points on foot 25 

Number of Points Detected 129 
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5.6.2 Combined Harris-Stephens and Color Intensity Algorithm 

 An initial set of feature points are obtained using Harris-Stephens algorithm. The color 

used to mark on the foot is entered as a parameter in the algorithm. RGB values of all points 

detected are stored. The selected points are filtered through the color bandwidth. The same image 

is used for comparison with the previous result obtained. The results obtained does not depend 

upon texture, complexion and other features of the foot which otherwise may get detected using 

Harris-Stephens algorithm.  

 

 

 

 

 

 

 

 

Fig. 5.4 Result of Points Detected on Same Image Using Combined Algorithms 

  

 It is noted from Fig. 5.4 that, there are certain extraneous points detected in the image 

besides the actual marked points on foot. This is because a more general background was used to 

test the algorithm. There are points which satisfy the initial threshold value to qualify as points 

being detected by Harris-Stephens algorithm. They also happen to pass the color bandwidth to 

finally appear on Fig. 5.4. A more defined background of a specific environment can eliminate 

these points and only detect marked points on foot. 
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  Table 5.3 Results of Points Detected on Actual Foot with General   
  Background Using Combined Algorithm 

Tracking Window Size wx (in pixels) 7 

Tracking Window Size wy (in pixels) 7 

Threshold Value t 0.07 

Actual marked points on foot 25 

Number of marked points detected 45 

Reduced number of points 84 

Color marked on foot blue 

RGB value [10 10 255] 

Bandwidth [5<R<15, 5<G<15, 240<B<255] ≤ [ 5 5 5] pixels 

 
5.7 Conclusions 

 The chapter begins with the review of earlier works done in corner detection. A brief 

overview of the Harris-Stephens algorithm is presented, where it is shown to be inefficient in this 

process. The current work utilizes the color information to eliminate a large number of 

extraneous points not on the foot. Preliminary results show an improvement over the existing 

Harris-Stephens algorithm which works on grey scale intensities of pixels. More comprehensive 

results with different foot images are shown in the succeeding chapters. However as seen in Fig. 

5.4, certain extraneous points were also detected. This was because the points were detected in 

Harris-Stephens algorithm and passed the bandwidth to form feature points. But this limitation 

can be reduced by using a uniform background and controlled lighting environment. 
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Chapter 6 

Feature Matching 
 
 

6.1  Introduction 

 Feature based matching consists of finding corresponding features in different images 

that represent the same features in the observed scene. This is the second and the most important 

step in 3D reconstruction process. Several methods are reviewed in this chapter and a combined 

method is presented to more robustly match features or corners in the images. This step assists in 

the calculation of the fundamental matrix that is required to estimate the extrinsic parameters of 

the camera system.  

6.2  Review of Earlier Works 

Feature matching is the most difficult and often most fragile component of the entire 3D 

reconstruction pipeline. Real scenes often present occlusions, specular reflections, cast shadows, 

changing illumination and other factors that make feature matching across wide baselines 

difficult. Different techniques were developed to overcome each of these challenges.  

One of the earliest methods uses cross-correlation intensity [MA2001]. Here a pixel 

window of user specified size is chosen and gross intensity value calculated for the 

neighborhood. This process is repeated for all selected points identified as corners in a pair of 

images.  

The algorithm then calculates a cross-correlation intensity for each point with all points 

in the second image. All correlation values are normalized and stored in a matrix. Their values 

range between –1 to 1.  

Any point pair from two images, which have a cross correlation value close to 1, are 

identified as a match i.e., they represent the image of the same element in the scene, and in this 
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thesis the points marked on the foot. Points which have cross-correlation values approaching –1, 

are deduced to be not correlated and ignored. This step begins the arduous task of feature 

matching.  

An important drawback of this process is that points, which have the same correlation 

due to similar color intensity, may not really be the same point in the scene. However this 

algorithm still assists in providing a reasonable collection of matches which can be taken as input 

in a second stage of process. 

The detailed description of the cross-correlation algorithm is as follows. Coordinates of 

candidate feature points are stored in a matrix. A correlation window of size (2n+1) x (2m+1) is 

centered on each corner detected in the first of the two images, where n and m are sizes specified 

by user. The correlation window is placed around this point in the second image and for all the 

corners falling inside this area, a correlation score is calculated with the following equation 

                                       

         .       (6.1) 
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ability of the algorithm in selecting matched features is poor and includes matching ambiguous 

corners. 

 Scott & Longuet-Higgins [SCOTT1991] proposed a new method of using distances 

among the points apart from utilizing the color intensities to match corners in two images. An 

important feature of the algorithm is its implementation, founded on eigenvector solution, which 

involves no explicit iterations. Proximity of corners is also given importance apart from color 

intensity values. A brief description of the algorithm is given below. 

 Let I and J be two images, containing a set of m  Ii(i=1…m) and n features Jj(j=1…n), 

respectively, which are to be put in one-to-one correspondence. The algorithm begins with 

building the proximity matrix G of the two feature sets where each element Gij is Gaussian-

weighted distance between two feature locations Ii and Jj: 

            
22 2/ σijr

ij eG −=  i=1…m, j=1…n                                       (6.2) 

where  rij = |Ii – Ij|  is the Euclidean distance as if both images are overlaid in the same 

coordinate axis. Gij decreases monotonically from 1 to 0 with distance. The parameter σ controls 

the degree of interaction between the two sets of features. A small value of σ  enforces local 

interactions, while a larger value permits more global interactions. Singular Value 

Decomposition (SVD) [PRESS1992] is performed on Gij. 

      TUDVG =          (6.3) 

mMU ∈  and 
nMV ∈  are orthogonal matrices and the diagonal matrix 

nmMD ,∈  contains the 

positive singular values along its diagonal elements Dii in descending order. If m<n, only the 

first m elements of U have any significance [MA2001]. Matrix D is converted to a new matrix E 

obtained by replacing every diagonal element Dii with 1 and then a new product is computed. 

      TUDVP =          (6.4) 
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This new matrix 
nmMP ,∈  has the same shape as the proximity matrix G and has the interesting 

property of “amplifying good pairings and attenuating bad ones” [SCOTT1991]. If Pij is both 

the greatest element in its row and the greatest element in its column, then the two different 

features Ii and Jj are regarded as being 1:1 correspondence to each other, otherwise they compete 

unsuccessfully and are discarded. This algorithm is rooted into the solution of subspace rotations 

problem known as “orthogonal Procrustes problem” [GOLUB1983].  

 Pilu [PILU1997] proposed to add intensity correlation values along with proximity to 

determine effective matching. The author worked on the weakness of Scott & Longuet-Higgins’s 

algorithm where only distances were considered as criteria for feature matching. Pilu added the 

intensity correlation matrix along with proximity matrix to evaluate G. 

 Pilu’s algorithm begins with using Equation 6.1 to evaluate the intensity cross-correlation 

for points in two images. rij = |Ii – Ij| , the Euclidean distance, between the points is calculated 

and correlation weighted proximity matrix is estimated as: 

     
2222 2/2/)1( ][ σγ ijij rC

ij eeG −−−=         (6.4) 

where 
22 2/)1( γ−− ijCe  is the Gaussian weighted function of the correlation Cij in which γ  

determines how quickly its values decrease with a diminishing Cij. This new correspondence 

strength can be seen as a correlation weighted proximity. The values of G still range from 0 to 1 

and the selection criterion is the same as in the previous algorithm. However, this new 

correspondence strength embodies the similarity between features and is therefore much more 

selective than just proximity as in Equation (6.2).  

 The black box nature of this algorithm is an important limitation. It is not possible to 

embed any non-pair wise constraint, such as the disparity gradient, or the geometric ordering 



www.manaraa.com

 47

constraint [POLLARD1985]. A better approach is to recover the epipolar geometry and the 

fundamental matrix to perform one-to-one stereo correspondence.  

 Shapiro and Brady [SHAPIRO1992] used an Eigen vector approach for feature-based 

correspondence. The algorithm copes with rotations and translations in the image plane, yet still 

give a dense correspondence. It basically uses the same concept as that of Scott & Longuet-

Higgins’s algorithm. Here the object could be rotated before taking the second image to get the 

same results that would be obtained using Scott & Longuet-Higgins’s algorithm. 

 One of the more recent approaches is that used by Zhang and Faugeras [ZHANG1994], 

where they recover the epipolar geometry by estimating the fundamental matrix to evaluate 

correct matches from an initial set of matches. The idea underlying this approach is to use the 

correlation technique to obtain an initial set of matches and then apply robust Least Median of 

Squares (LMedS) to discard false matches. Then the epipolar geometry is recovered by 

estimating the Fundamental Matrix and more matches are eventually found. 

 The process begins with the estimation of at least eight correct correspondences using 

either the correlation intensity algorithm or Scott & Longuet-Higgins algorithm. Unlike the 

original algorithm which Zhang implements using sub-sampling techniques and Least Median of 

Squares (LmedS) technique to determine eight matches correctly, the method adopted in this 

thesis is simplified by manually choosing eight corresponding corners from the initial results. 

 Earlier techniques adopt information either using the intensity of the pixels or measuring 

distances between the points to determine initial matches. This method involves recovering the 

epipolar geometry between the images and the 3D point in question. This is reversing the process 

of calibrating the camera, where 3D information is utilized to evaluate the mapping between 3D 

points to their 2D coordinates in the images.  
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 The input is at least eight good correspondences from two images, which contain 

information about how the two images are positioned relative to each other in 3D world 

coordinate system. Since epipolar geometry (see Fig. 6.1) only depends on internal parameters of 

the camera and relative pose, the scene structure is of no relevance to determine the matches.  

 

Fig. 6.1 Epipolar Geometry between Points in Two Images and 3D Point in Space 

 The fundamental matrix F encapsulates this intrinsic geometry. It is a 3 x 3 matrix of 

rank 2. If a point in 3-space X is imaged as x in the first view, and x  in the second view, then the 

image points satisfy the relation 

                  0' =Fxx T .                                                               (6.4) 

 Though the fundamental matrix is independent of scene structure, it can be computed 

from correspondence of imaged scene points alone, without requiring knowledge of the cameras’ 

internal parameters or relative pose. F maps a point in one image to a corresponding epipolar line 

in the other image. A full treatise of robust, algebraic estimation of F can be found in Zhang’s 

manuscript [ZHANG2001b]. A minimum of seven points are necessary to compute F though 8 

points could be used to finally corroborate the estimated value of F. Once F has been 

determined, all points in image 2 are used to test the epipolar constraint condition in Equation 
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6.4. The points, which satisfy the condition, are treated as a match otherwise they are ignored. 

This method proves more effective as a solution for feature correspondence compared to earlier 

methods.  

 

6.3  Results 

 This section reviews results obtained from different methods described earlier. A plastic 

foot model is used with points marked on it. All algorithms use the same set of images. As a 

convention, the image to the left is designated as image1 and image to the right as image 2 in all 

figures. The images are taken by moving the same camera in two different positions. Circled 

points in both the images indicate a match for all figures. The camera used is Intel© CS330 

whose specifications are listed in Section 4.7. Section 6.3.5 uses two cameras of the same 

product specification. The cameras are fixed to the foot scanner in a specific configuration to 

capture all points on plaster foot.  

 Initial set of results include applying the intensity cross-correlation algorithm (section 

6.3.1) to obtain point matches. Distance proximity matrix related matching is performed by 

implementing Scott, Longuet-Higgins (section 6.3.2) and Pilu’s algorithm (section 6.3.3). Robust 

matching of points on two images is done using simplified Zhang’s algorithm, where the 

epipolar geometry is recovered by estimating the fundamental matrix. Final set of results of one-

to-one point correspondence of points is obtained by evaluating the homography matrix of the 

stereo image pair. 
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6.3.1 Results Using Intensity Cross-Correlation Algorithm 

 

  

Fig. 6.2 Initial Matches Using Intensity Cross-Correlation. (Circled points indicate a 
match) 
 

Preliminary Feature Correspondence using intensity cross-correlation. 

• Actual number of marked points on foot model = 26  

• Number of good matches: 10.  

• Percentage of good matches: 38% 

• Number of ambiguous matches: 9 

• Number of points not matched: 7  

• Representative search window size: 7 x 7 in pixels 

 The plot shown in Fig. 6.3 is indicative of different results obtained when the search 

window size is changed. For small window size such as 2 (in pixels) fewer matches are obtained 

as compared to window size 7. Increasing the window size farther usually becomes time 

intensive computationally, but does not increase the number of matches significantly.  
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Fig. 6.3 Plot of Search Window Size vs. Number of Matches Using Correlation Algorithm 

6.3.2 Results Using Scott, Longuet-Higgins’ Algorithm 
 

  

Fig. 6.4 Feature Matching Using Scott, Longuet-Higgins’ Algorithm (Circled points 
indicate a match) 
  
 Comparing Fig. 6.3 and Fig. 6.4, it is noted that more matches are obtained using Scott, 

Longuet-Higgins algorithm. The results are listed as follows. 
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Feature Correspondence using proximity method.  

• Actual number of marked points on foot model = 26  

• Number of good matches: 16 

• Percentage of good matches: 61% 

• Number of ambiguous matches: 9 

• Number of points not matched: 0  

6.3.3 Results Using Pilu’s Algorithm 

 

 

 

Fig. 6.5 Feature Matching Using Pilu’s Algorithm (Circled points indicate a match) 

Feature Correspondence using correlation weighted Gaussian proximity matrix method.  

• Actual number of marked points on foot model = 26 

• Number of good matches: 19.  

• Percentage of good matches: 73% 

• Number of ambiguous matches: 4 

• Number of points not matched: 2  

• Representative search window size: 7 x 7 in pixels 
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6.3.4 Results Using Zhang’s Algorithm by Recovering Epipolar Geometry  

 The method used in the thesis is a simplified Zhang’s algorithm to obtain more robust 

matching. The details of which are discussed in Section 6.2. The process begins with an initial 

matching using intensity cross-correlation technique as described in Section 6.3.1. At least 8 

points are picked manually from the result. These points serve as input to determine the 

fundamental matrix. The epipolar constraint is applied to determine the best match for all points 

in image 1 to their corresponding points in image 2 by evaluating the fundamental matrix.  

 

 

 

 

Fig. 6.6 Initial Correspondence using Intensity Cross-Correlation (Circled points indicate a 
match) 

 

 Initial results are obtained using intensity cross-correlation algorithm. Eight points are 

selected interactively to determine the fundamental matrix from Fig. 6.6. Fundamental matrix is 

then estimated using Zhang’s method [ZHANG2001]. All points in image 2 are checked for each 

point in image 1 for epipolar constraint condition. Point in image 2 which satisfies the condition 

is termed a match to the point in image 1.Coordinates of the initial eight correspondences are 

listed in Table 6.1. 
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Table 6.1 (x, y) Coordinates of 8 Corresponding Points in Image 1 and Image 2 

Point 

No. 

Coordinates of x and y in 

image 1 (pixels) 

Coordinates of x and y in 

image 2 (pixels) 

n x1 y1 x2 y2 

19 156 21 156 9 
9 182 26 184 15 
11 207 35 210 22 
4 159 55 162 44 
5 197 65 201 55 
13 167 89 173 79 
8 198 91 204 79 
14 172 118 179 108 

 

The values of the matrix are as follows. 

                                             

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−
=

2986.10254.00037.0
0248.000
038.00001.00

F                                  (6.4) 

Matrix F has rank 2 and its determinant is 0. This is because F maps a point in Image 1 to its 

epipolar line in Image 2. Epipolar lines are constructed in Image2 using the given set of points in 

Image 1 and F using the following equation:  

             
1

' FXl =                                                               (6.5) 

where l’ is the epipolar line in image 2 associated with point X1 in image 1. Epipolar lines are 

defined to pass through the corresponding points in image 2. Epipolar lines for 3 of the 8 chosen 

points are shown in the Fig. 6.7 – Fig. 6.10. 
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Fig. 6.7 Point 1 in Image 1 and Epipolar Line passing through Corresponding Point in 
Image 2 

  

Fig. 6.8 Point 1 in Image 1 and Epipolar Line passing through Corresponding Point in 
Image 2 

  

Fig. 6.9 Point 1 in Image 1 and Epipolar Line passing through Corresponding Point in 
Image 2 

1 
1 

2 
2 

3 
 3 
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Fig. 6.10 All 8 Points in Image 1 and Epipolar Lines passing through The Corresponding 
Points in Image 2 

 

 What can be observed from Fig. 6.7 is that all epipolar lines intersect at one point which 

is known as the Epipole. This characteristic point is also defined as the “point of intersection of 

the line joining the camera centers with the image plane” [MA2001]. All points in image 1 can 

now be matched to image 2 using the epipolar constraint given in Eqn. 6.5. 

  

Fig. 6.11 All Points in Image 1 and Epipolar Lines passing through the Corresponding 
Points in Image 2 
 

 The correspondence algorithm begins by applying the epipolar constraint to each of the 

feature points in image 1 to all points in image 2. As points do not exactly lie on the epipolar 

1 2 
3 

4 
5 

6 
7 

8 
Epipole 
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line, residual error is used to find the closest point to that line. The point number and the 

coordinates are also stored. This point then corresponds to point 1 in image1. The same step is 

repeated n times, where n is the number of points in image 1. The final matrix is then arranged in 

the same order as the points in image 1 and correlated feature points are plotted as shown in Fig. 

6.12. 

Fig. 6.12 Final Feature matching after Applying Epipolar Constraint to Two Images 

 Final feature correspondence by recovering the epipolar geometry: 

• Actual number of marked points on foot model = 26 

• Number of good matches: 23 

• Percentage of good matches: 88% 

• Number of ambiguous matches: 1 

• Number of points not matched: 1  

• Representative search window size: 7 x 7 in pixels. 

 It is observed that, the results obtained here are a significant improvement from Pilu’s 

algorithm. This method partially depends on the quality of the images or intensity variations to 

correspond the points unlike the correlation algorithm. 
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6.3.5 Results Using Fixed Configuration of Cameras 

 This section deals with fixing the positions of two cameras in a particular configuration 

and obtaining different images. This is to verify the fundamental matrix having the same value, 

because it depends, only on the camera matrix and relative pose between the cameras. The 

experiment was carried out fixing the cameras at the optimal location to capture marked points 

on the foot model. Two cameras were used in the process. 

6.3.5.1 Case 1 

Fig. 6.13 Case 1: Feature matching of Points on Plaster Foot by Recovering Fundamental 
Matrix 
  
 In Case 1, points were detected on the foot. It is seen that more points were detected than 

marked on image 1. But by evaluating the fundamental matrix and performing correspondence, 

most points marked on foot were matched correctly. The results are given below. 

• Actual number of marked points on foot model = 17  

• Number of good matches: 16.  

• Percentage of good matches: 94% 

• Number of ambiguous matches: 0 

• Number of points not matched: 0 
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• Number of points with multiple correspondence: 1  

• Representative search window size: 7 x 7 in pixels. 

The fundamental matrix obtained in case 1 is given below: 

                                       

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−

=
3809.10202.00111.0
013.000001.0

0059.00001.00

1CaseF                                       (6.6) 

FCase1 has rank 2 and its determinant is 0 as expected. 

6.3.5.2 Case 2 

Fig. 6.14 Case 2: Feature matching of Points on Plaster Foot by Recovering Fundamental 
Matrix  
 

 In Case 2, unlike case 1, the fundamental matrix was not evaluated using an initial set of 

matches. Instead, FCase1 was used for point correspondence. It is see that most points on the foot 

were matched correctly using the same fundamental matrix. This shows that F remains the same 

for a fixed configuration of cameras. Since the cameras were fixed to a foot scanner frame, just 

one trial is needed to estimate F. All subsequent pairs of images can use the same matrix to 

perform feature correspondence. The results for case 2 are given below. 

• Actual number of marked points on foot model = 17  
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• Number of good matches: 16.  

• Percentage of good matches: 94% 

• Number of ambiguous matches: 0 

• Number of points not matched: 0 

• Number of points with multiple correspondence: 1  

The representative search window size: 7 x 7 in pixels. The fundamental matrix obtained after 

using at least eight correlated points to check for accuracy is: 

                                   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−−
−

=
4925.10239.00103.0
0231.00001.00001.0
0068.00001.00

2CaseF                                       (6.7) 

Comparing Eqns. 6.6 and 6.7, it is see that most values in the matrices are the same. Small 

variations occur due to corner detection errors. 

6.3.6 Feature Matching Using Homography Matrix 

 One of the important results obtained by recovering the epipolar geometry is determining 

the extrinsic parameters (rotational matrix R and translational matrix T) of the camera. From this 

a direct mapping of one point in its image to its corresponding point in the second image is 

possible through what is known as the homography matrix. Determining R and T is dealt in more 

detail in Chapter 7 by means of implementing the eight-point algorithm [LONGUET-

HIGGINS1981].  

 The points in two images (x1, x2) are given for a point p œ P with respect to two camera 

frames as input. The coordinate transformation between the two frames are then given as, 

          x2 = R x1 +T,                                                             (6.8) 

where, x1 and x2 are the coordinates of p relative to camera frames 1 and 2, respectively. Since 

the two points in two images satisfy the epipolar constraint, 
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             x2E x1 = 0.                                                              (6.9) 

where, E is called the essential matrix (see Section 7.6). However, for points on the same plane 

P, their images will share an extra constraint apart from the epipolar constraint.  

 Let N = [n1, n2, n3]T be the normal unit vector of plane P with respect to the first camera 

frame, and let d > 0 denote the distance from the plane P to the optic center of the first camera 

[MA2001]. Then, 

             N T x1 = n1x + n2y + n3z =d     ñ     (1/d) N T x1 = 1                              (6.10) 

Therefore Eqn. 6.8 becomes, 

              x2 = (R  +T (1/d) N T )x1.                                                 (6.11) 

The matrix,  

       H =R +T (1/d) N T,                                                      (6.12) 

is called the homography matrix since it denotes a linear transformation from x1 to x2 given as, 

                                                                   x2 = λHx1                                                               (6.13) 

where λ is the scale factor from the image pair considered. 

 This important result is used in this section to determine the homography matrix of a 

stereo image pair after obtaining the relative pose between the cameras. This would finally 

ensure the best feature mapping of all points in image 1 to 2. 

6.3.7 Results Using Homography Matrix 

 A pair of images of the same plaster foot is taken. Eight initial correspondences are 

determined using the intensity cross-correlation algorithm. The homography matrix is then 

evaluated using Eqn. 6.12. 

              

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−

−
=

482.00002.00006.0
5476.165625.01044.0

51.180048.0754.0
H                                     (6.14) 
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Using the matrix as obtained above, all detected points in image 1 can be correlated to the same 

points in image 2. The scale factor for point 1 obtained was, 

             

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

88.1
9.1
88.1

λ                                                            (6.15) 

Fig. 6.15 Feature Matching of Points on Plaster Foot using Homography Matrix 

 It is observed that only one point has a mismatch. All other points detected on image1 are 

matched to their corresponding points in image 2. 

6.4 Conclusions 

 This chapter takes an overview of different methods used in feature matching. It also 

gives perspective on the drawbacks of each method and suggesting modified Zhang’s method of 

recovering the epipolar geometry as a means for robust feature matching. To perform complete 

feature point correspondence, sub sampling and LMedS techniques [ZHANG2001] could be 

utilized besides recovering epipolar geometry.  
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Chapter 7 

3D Reconstruction 
 

7.1  Introduction 

 This chapter outlines the steps involved in obtaining 3D point geometry of foot in a 

stereo image pair. Considered the final process in the reconstruction pipeline, it relies completely 

on the data provided in the earlier stages. The process to reconstruct the 3D geometry needs 

camera calibration information, feature points detected in a pair of images and at least eight 

corresponding point pairs from the two images. A series of steps is performed, beginning with 

determining the essential matrix, which contains the relative pose of the pair of cameras. Once 

the relative pose or extrinsic parameters of the pair of cameras is determined, linear 3D 

triangulation method is used to compute the 3D coordinates in space. First, the 3D points of an 

unscaled structured model are reconstructed. It is followed by reconstruction of scaled 3D points 

by using a reference cube which is outlaid in section 7.6.2.      

7.2  Assumptions Made to Eliminate Reconstruction Ambiguity 

 In this section inherent ambiguities in 3D reconstruction are discussed and assumptions 

made to eliminate them. Without some knowledge of a scene’s placement with respect to a 3D 

coordinate frame, it is generally not possible to reconstruct the absolute position or scale of a 

scene from a pair of views [HARTLEY2004]. This is independent of any knowledge which may 

be available about the internal parameters of the cameras, or their relative placement. The best 

depth estimation of the scene in 3D space is obtained when the two images are placed at vantage 

points where one image has both known rotational and translational displacement with respect to 

the other. The assumptions made to eliminate any reconstruction ambiguity are: 
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• Both the images are not coplanar or parallel with respect to one of the image coordinate 

systems. 

• Both images do not have a pure translation component among each other. In other 

words, image 2 does not lie on the same Z plane as image 1 in one of the image 

coordinate systems. 

• There is no projective ambiguity since internal parameters of the cameras as well as the 

relative pose between them are known (the cameras are fixed in the foot scanner and 

they have a definite configuration between them). Projective ambiguity occurs when 

the angle between the lines joining the image points and the 3D point in space is some 

is not a definite value.   

7.3  Steps Towards Euclidean Reconstruction 

 As mentioned in the earlier section, the cameras are positioned in a particular 

configuration in the foot scanner. This helps evaluate the relative pose in terms of translation T 

and rotation R of one of the cameras with respect to the other. This transformation is evaluated 

using the eight point algorithm. For subsequent trials, matrices R & T remain the same. 

Calibrating the camera also helps to define a better structured scene in 3D space. Though 

introductory concepts and transformations of projective and affine geometry were reviewed in 

Chapter 2, the approach here is to use both the extrinsic and intrinsic parameters of the camera to 

obtain a Euclidean 3D reconstruction. 

7.4  Eight Point Algorithm 

 The eight point algorithm for computing the essential matrix was introduced by Longuet-

Higgins [LONGUET-HIGGINS1981]. In his work, the essential matrix was used to compute the 

structure of a scene from two views with calibrated cameras. Among the advantages of the eight 
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point algorithm are that it is linear, hence computation is fast and stable. The important property 

of the essential matrix is that it conveniently encapsulates the epipolar geometry of the imaging 

configuration. Later work by Hartley [HARTLEY1997] showed that the same algorithm could 

be extended to determine the fundamental matrix if a pair of uncalibrated images was used, but 

in this case only up to a projective reconstruction.   

 The work in this thesis uses the eight point algorithm to recover rotational R and 

translational T matrices between a pair of cameras, since calibrated images are used as input. A 

general treatise on the algorithm is succinctly described in Invitation to Computer Vision 

[MA2001].  

 For a given set of image correspondences ( x1
j, xj

2 ), j = 1,2…n (n ¥ 8), this algorithm 

recovers ( R, T ) œ S3, where S3 is defined as the image coordinate system of camera 1. First an 

approximation of the essential matrix is constructed as c = [ a1, a2, …., an]T from 

correspondences x1
j and xj

2 as in Equation 7.1. 

                                                              aj =  x1
j ≈ xj

2 .                                                              (7.1) 

Vector Es is defined such that || aj Es || is minimized. This is done by performing Singular Value 

Decomposition on aj given by, 

   SVD of aj = U cD cVc T ,                                                 (7.2) 

and define Es to be the ninth column of Vc. The nine elements of Es are unstacked into a 3x3 

matrix  Ep. SVD on Ep gives, 

                                                         E = Udiag( s1, s2, s3 )VT  ,                                               (7.3) 

where, s1 ¥ s2 ¥ s3 ¥ 0 and U, V œ 3 D orthogonal group. The projection onto the normalized 

essential space is evaluated by replacing s1, s2, s3 with [1,1,0]. Therefore E now becomes, 

         E = USVT    ,                                                              (7.4) 
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where, S = diag{1,1,0}. Displacement parameters ( R and T) are recovered from the essential 

matrix given by, 

                                       TT

Z VURR )
2

( π
±= ,  TT

Z UURT Σ±=
∧

)
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( π   ,                               (7.5) 

where,  
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and,        
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 The matrix 
∧

T is always rank deficient, i.e., rank =2. The number of points, eight, 

assumed by the algorithm, is mostly for convenience and simplicity of presentation. Matrix E ( 

as a function of (R,T) has only a total of five degrees of freedom: three for rotation and two for 

translation (up to a scalar factor). Many subsequent works introduced different algorithms 

[MAYBANK1993] to work on lesser points ( seven to five points), but it was generally 

concluded that the eight point algorithm works reasonably well when adequate information of 

the 3D configuration between the cameras and their parameters are defined [HARTLEY1997].  

7.5  3D Structure Computation 

 This section describes the computation of a 3D point in space, given its image in two 

views and the camera matrices of those views. It is assumed that there are errors only in the 

measured image coordinates and not in the camera calibration matrix. 

 The common process of reconstruction of structure by back-projecting rays from the 

measured image points will result in bad results because the rays will not intersect in general. It 
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is therefore necessary to obtain an optimal solution to 3D triangulation by reprojecting the points 

in the second image and minimizing the correspondence error. 

 The measured points x1 and x’
2 in image 1 and 2 may have errors associated with them. 

When the rays from the points are back-projected, they may be skew to each other and may not 

intersect at a point X1 as desired. Also, the image points may not exactly satisfy the epipolar 

constraint, x’TFx=0. To obtain a successful set of feature correspondences, we need to minimize 

the residue of the equation x’TFx. Once a set of good points have been established, 3D linear 

triangulation can be done to obtain the 3D point in space. 

 The eight-point algorithm described in Section 7.4 uses an input of eight point 

correspondences and returns the relative pose (rotation and translation) between the two cameras. 

In terms of images and depths, the rigid body equation is given by, 

      TRxx jjj
x

j γλλ += 112 , j=1,2,…n                                           (7.8) 

where, λ1 and λ2 are the structural scales and g is defined as the motion scale for the two camera 

system. For each point, λ1, λ2 are its depths with respect to the first and second camera frames 

respectively. One of them is therefore redundant; for instance, if λ1 is known, then λ2 is simply a 

function of (R,T). Hence λ2 can be eliminated from Equation. 7.8 by multiplying both sides 

by
∧

2x , which yields, 

        02121 =+
∧∧

TxRxx jj γλ , j=1,2,…n.                                           (7.9) 

This is equivalent to solving the linear equation, 

         0, 1

212 =⎥
⎦

⎤
⎢
⎣

⎡
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⎡=
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j TxRxxM .                                      (7.10) 
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where, jM = ⎥⎦
⎤

⎢⎣
⎡ ∧∧

TxRxx jjj
212 , and jλ = ⎥

⎦

⎤
⎢
⎣

⎡
γ
λ j

1 , for j = 1,2,…n. 

 In order to have a unique solution, the matrix M j needs to be of rank 1. In other words, 

the point P lies on the line connecting the two optical centers o1 and o2. Equation 7.10 

determines all the unknown depths up to a single universal scale [MA2001]. The linear least-

squares estimate of λ is the Eigenvector of  MTM that corresponds to its smallest Eigenvalue. It is 

also noted that the 3D points reconstructed have coordinates with respect to the image coordinate 

system of image 1. 

 

7.6 Results 

7.6.1 Reconstruction of a Shelf-File 

  

 This section shows the reconstruction of a simple structured object such as a shelf-file. 

The process begins with point detection (in this case the corners of the box). Point 

correspondence among the points in two images is performed next and  extrinsic parameters of 

the camera system are estimated using eight-point algorithm. A linear 3D triangulation method is 

used to reconstruct the corners of the box on a 3D coordinate system, which is the coordinate 

system of image 1. The actual dimensions of the file are as shown in Fig. 7.1. The resulting 3D 

point cloud of the reconstructed model as shown in Fig. 7.3 is not scaled. Techniques to scale the 

model are discussed with results in section 7.6.2. 
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Fig. 7.1 Dimensions of Shelf-File 

 

 

 

Fig. 7.2 Marked Corners on Shelf-File on Both Images 
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Fig. 7.3 3D points of Shelf-File 

7.6.2 Reconstruction of a Scaled Box Using a Reference Cube 

 

This section describes the process of scaling the 3D point data to absolute metric values. 

This is performed by placing a reference entity besides the object, to be reconstructed. The 

reference object dimensions are measured. In this thesis, a cube of edge length 4.5 cm is 

considered for simplicity (see Figure 7.4). All the steps leading to feature matching 

corresponding points are performed as described in earlier chapters. Points of the cube are also 

detected and matched. The final 3D point cloud is reconstructed using stereo image pair.  

 

The 3D point distances of the cube obtained from reconstruction are determined. From 

this, a scale factor is evaluated. The same scale factor is used to scale the reconstructed model to 

its metric units. Results for a simple reconstructed box are shown in Fig. 7.5. 
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Fig. 7.4 Marked Points on Object and Reference Cube 

 
 

 

Fig. 7.5 3D points of Object and Reference Cube 



www.manaraa.com

 72

Table 7.1 Distances between Points in Reference Cube 
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123 )()()( zzyyxxd D −+−+−=                        (7.11) 

The Euclidean distance measured between points is given by Equation 7.11. Actual distance 

between the points in the reference cube is da=4.5 cm. From Table 7.1, the averaged distance 

between all measured points is davg=0.23. The associated scale factor is then estimated as s= da/ 

davg = 19.56. The same scale is applied to the distances of the reconstructed box. The final scaled 

distances and the measured distances of the box are tabulated in Table 7.2. A plot of actual 

distances and scaled distances are also shown in Fig. 7.6. It is noted that, the small differences in 

values are due to point detection errors that occur during feature detection algorithm. All errors 

lie between 1.27 – 9.82%. The same reference cube is placed besides a foot during image 

capture. The process as described in this section is repeated to obtain a scaled 3D model of the 

foot.  

Distance Pair 
(points) 

Distance  
d 

1,2 0.23 

2,3 0.24 

3,4 0.23 

5,6 0.23 

6,7 0.24 

1,4 0.24 

2,5 0.23 

3,6 0.23 

4,7 0.24 
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Table 7.2 Comparison of Scaled Distances and Actual Distances of the Object 

Distance Pair 
(Points) 

Scaled Distance 
ds (cm) 

Actual Distance 
da (cm) 

9,10 8.24 8 

11,8 8.6 8 

12,13 8.93 8 

13,14 9.62 9.4 

10,11 9.28 9.4 

8,9 9.71 9.4 

9,12 16.31 16 

10,13 16.26 16 

11,14 16.81 16 

 

 

 

Fig. 7.6 Comparisons of Scaled Distances and Actual Distances of Box 
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Fig. 7.7 3D Wire Frame Model of Scaled Object and Reference Cube 

7.6.3 Reconstruction of a Plaster Foot Using a Reference Cube 

The process as described in section 7.6.2 is used to reconstruct plaster foot geometry. The 

same reference cube whose dimensions are known is placed besides the foot. The scale factor 

obtained here was 24.48. The scaled 3D points of plaster foot are shown in Fig. 7.9. 

  
Fig. 7.8 Marked Points on Plaster Foot and Reference Cube 
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Fig. 7.9 3D Point Cloud of Plaster Foot              Fig. 7.10 Surfaced Interpolated 3D Points of  
            and Reference Cube                    Plaster Foot and Reference Cube  

 
 

Fig. 7.11 Triangulated Patches between 3D  Fig. 7.12 Surface Interpolated 3D points 
                    Points of Plaster Foot                  of Plaster Foot  
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7.6.4 Reconstruction of an Actual Foot Using a Reference Cube 

The same process of image capture, feature detection and matching is performed on the 

stereo pair images of a real foot. The scale factor obtained here was 17.11. The scaled 3D points 

of the actual foot are shown in Fig. 7.13. 

 

 

  
Fig. 7.13 Marked Points on Actual Foot and Reference Cube 

Fig. 7.14 3D Point Cloud of Actual Foot            Fig. 7.15 Surfaced Interpolated 3D Points  
            and Reference Cube                  of Actual Foot and Reference Cube 
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Fig. 7.16 Triangulated Patches between 3D  Fig. 7.17 Surface Interpolated 3D points 
                    Points of Actual Foot                  of Actual Foot 

Table 7.3 3D Scaled Coordinates (x,y,z) of the Foot 

Point 8 9 10 11 12 13 14 15 16 17 18 
x -5.48 -6.37 -6.83 -6.74 -6.44 -4.41 -4.59 -4.55 -4.35 -2.79 -2.72 
y 1.44 0.14 -1.75 -4.05 -6.16 0.15 -1.84 -3.98 -6.06 -0.24 -2.60 
z 31.26 31.10 31.04 30.24 29.77 31.53 31.51 31.46 31.56 32.32 32.46 

            
Point 19 20 21 22 23 24 25 26 27 28 29 

x -2.72 -2.56 -1.12 -1.18 -1.08 -1.03 0.30 0.25 0.19 1.61 1.57 
y -4.57 -6.03 -1.04 -2.90 -4.50 -5.95 -1.47 -3.36 -4.98 -1.81 -3.58 
z 32.98 33.05 33.05 33.15 33.66 34.02 33.49 33.69 34.13 33.74 33.44 

            
Point 30 31 32 33 34 35 36 37 38 39 40 

x 1.53 2.96 2.92 2.73 4.24 4.03 4.04 5.34 5.28 5.35 6.50 
y -5.39 -1.65 -3.72 -5.88 -2.08 -3.89 -6.19 -2.89 -4.44 -6.18 -4.71 
z 33.57 33.91 33.20 33.56 34.00 33.22 33.44 33.79 33.13 33.35 33.88 
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7.6.5 Reconstruction of Varied Point Distances on Foot 
 
 A test run was performed to reconstruct 3D points with varied distances marked on foot. 

This is implemented to ensure the required point resolution in detecting, feature matching and 

reconstructing the 3D points. The approximate diameter and the distance between the points are 

given in Table. 8.3. All values are within ≤ 0.5 mm. 

Table 7.4. Varied Point Sizes and Distances Marked on Foot 

Dotted Line Distance (mm) Diameter(mm) No. of dots 
1 15 3 6 
2 6 1.5 11 
3 3 1 15 
4 2 <1 22 

 

The results are shown from Fig. 7.20 to Fig. 7.23. 

 

  
Fig. 7.18 Feature Detection of Marked Points using Harris Detector Algorithm 
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Fig. 7.19 Feature Detection of Marked Points using Combined Algorithm 

 

  

Fig. 7.20 Feature Matching of Marked Points using Homography Matrix 
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Fig. 7.21 Two Views of the Reconstructed 3D Points  

  

Table 7.5 Unscaled (x,y,z) Coordinates of 48 Points  

Point 1 2 3 4 5 6 7 8 9 10 11 12 
x -0.79 -0.53 -0.39 -0.31 -0.25 -0.23 -0.18 -0.14 -0.12 -0.06 0.02 -0.33 
y 1.54 0.81 0.47 0.25 0.13 0.03 -0.07 -0.15 -0.32 -0.53 -0.58 1.60 
z 6.17 3.89 2.80 2.16 1.91 1.89 1.79 1.81 2.44 3.28 3.00 5.95 

             
Point 13 14 15 16 17 18 19 20 21 22 23 24 

x -0.23 -0.18 -0.12 -0.11 -0.07 -0.05 -0.03 0.00 0.02 0.03 0.08 0.15 
y 1.09 0.80 0.59 0.49 0.38 0.29 0.20 0.14 0.06 -0.01 -0.08 -0.21 
z 4.37 3.47 2.82 2.70 2.45 2.36 2.19 2.07 1.65 1.39 1.71 1.58 

             
Point 25 26 27 28 29 30 31 32 33 34 35 36 

x 0.32 0.49 0.06 0.05 0.05 0.05 0.08 0.10 0.14 0.17 0.20 0.24 
y -0.38 -0.55 1.83 1.29 0.97 0.74 0.67 0.58 0.55 0.46 0.41 0.35 
z 3.74 7.12 6.62 4.98 3.97 3.26 3.25 3.10 3.30 3.12 3.19 3.42 

             
Point 37 38 39 40 41 42 43 44 45 46 47 48 

x 0.36 0.36 0.33 0.43 0.47 0.42 0.34 0.21 0.16 0.15 0.11 0.11 
y 0.33 0.24 0.13 0.10 0.02 -0.03 -0.05 -0.05 -0.06 -0.06 -0.06 -0.06 
z 4.32 3.85 3.33 3.91 3.96 3.36 2.43 1.31 0.94 0.80 0.56 0.53 
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It is noticed that all points are detected for varying distances and size in Fig. 7.20.  All 

extraneous points are eliminated using combined algorithm as seen in Fig. 7.21. Feature 

matching is done using homography matrix (Fig. 7.22) and 3D reconstruction of all points is 

performed as shown in Fig. 7.23.It is noted from Table 8.5 that the points are not scaled. 

7.7 Conclusions 

 This chapter takes an overview of 3D reconstruction of a foot from a pair of images. 

Steps included, determining the relative pose (extrinsic parameters) between the cameras using 

eight-point algorithm, and triangulating the 3D point in space to obtain a complete reconstruction 

of the model, using linear triangulation method. A reference cube was placed besides every 

image pair considered for reconstruction. This assisted in evaluating the necessary scale used to 

reconstruct all objects including foot. A plaster foot was first used to reconstruct all points 

marked on it. Next, 3D reconstruction of an actual foot was accomplished from a stereo image 

pair. All output geometry included a 3D point cloud, triangulated patches from 3D points, 

surface interpolated data from 3D points and the 3D coordinates of the points.  
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Chapter 8 

Conclusions and Future Work 
 

8.1 Summary and Conclusions 

 Orthopedic footwear plays an important role as a treatment and preventive measure 

against foot conditions associated with diabetes. Through the use of customized shoe insoles, a 

podiatrist can provide a means to better distribute the pressure around the foot, and can also 

correct the biomechanics of the foot. The work outlaid in this thesis details a method of capturing 

3D foot geometry by utilizing a pair of images, results in the entire project being inexpensive and 

more suited to the needs of the podiatrist, than commercially available scanners today. 

 The current work has reviewed different algorithms, in different phases of reconstruction 

process. Careful consideration was given as to how each one of them would be effective and the 

best algorithm(s) were chosen to achieve the objective.  

 The work presented here is a novel technique to capture 3D foot geometry from images. 

However there are several challenges faced to make this project commercial. Among them are a 

more robust method to calibrate the camera, better feature detection methods to capture the 

marked points on foot and a standardized method to scale the points by calibrating the distances 

and the size of the reference object. A statistical error analysis needs to be performed to get a 

better picture of all algorithms used, with respect to their stability and accuracy. 

8.2 Future Work 

 The current work of reconstructing the 3D foot geometry was restricted to a pair of 

images, for simplicity. A more robust and accurate scheme would be to involve five cameras in 

the process of image capture. This assists in determining all parameters, fundamental matrix and 

the relative pose between the cameras more accurately than in a stereo image pair. A more robust 
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technique to mark points on foot would be to project a laser/color light grid on the foot. It could 

be an n x n grid of squares which encompasses the plantar surface of the foot. This increases the 

percentage of detected features and gives more points to reconstruct the 3D geometry of foot.  

 The 3D point coordinates of the foot obtained using MATLAB, could be converted to a 

different format, such as VRML (Virtual Reality Modeling Language) or STL (Stereo 

Lithography). These formats are recognized by commercial softwares, which can be used to 

create models either from a 3D printer or a CNC machine. This could complete the cycle of 

creating a template of the shoe insert. Finally, the entire process can be streamlined by using 

standard digital high resolution cameras, obtaining a quick sequence of five images of foot and 

increasing the process of point detection and matching by implementing it in a more controlled 

environment.  
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